Evolutionary Granular Kernel Machines
نویسندگان
چکیده
Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently.
منابع مشابه
Granular support vector machine based on mixed measure
This paper presents a granular support vector machine learning model based on mixed measure, namely M_GSVM, to solve the model error problem produced by mapping, simplifying, granulating or substituting of data for traditional granular support vector machines (GSVM). For M_GSVM, the original data will be mapped into the high-dimensional space by mercer kernel. Then, the data are divided into su...
متن کاملSupport Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures
With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optica...
متن کاملOptimizing Hyperparameters of Support Vector Machines by Genetic Algorithms
In this paper, a combination of genetic algorithms and support vector machines (SVMs) is proposed. SVMs are used for solving classification tasks, whereas genetic algorithms are optimization heuristics combining direct and stochastic search within a solution space. Here, the solution space is formed by combinations of different SVM’s kernel functions and kernel parameters. We investigate classi...
متن کاملGranular Decision Tree and Evolutionary Neural SVM for Protein Secondary Structure Prediction
A new sliding window scheme is introduced with multiple windows to form the protein data for SVM. Two new tertiary classifiers are introduced; one of them makes use of support vector machines as neurons in neural network architecture and the other tertiary classifier is a granular decision tree based on granular computing, decision tree and SVM. Binary classifier using multiple windows is compa...
متن کاملEvolving Hyperparameters of Support Vector Machines Based on Multi-Scale RBF Kernels
Kernel functions are used in support vector machines (SVMs) to compute dot product in a higher dimensional space. The performance of classification depends on the chosen kernel. Each kernel function is suitable for some tasks. In order to obtain a more flexible kernel function, a family of RBF kernels is proposed. Multi-scale RBF kernels are combined by including weights. These kernels allow be...
متن کامل